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Abstract

It is shown that any triangular derivation on k[X1, X2, X3, X4] sending Xi to a monomial has kernel generated by

at most four elements, hence is finitely generated. An explicit formula for the generators is given.

1 Introduction

Derivations and the study of their kernels play a crucial role in many problems. (For an excellent account the
reader is referred to [Nowicki, 1994]). An important question is if a certain derivation has finitely generated
kernel. This question is closely related to Hilbert’s 14th problem, stated in 1900:

Let k be a field and L a subfield of the field of rational functions k(X1, . . . , Xn) containing k. Is
L ∩ k[X1, . . . , Xn] a finitely generated k-algebra?

If one has a derivation whose kernel is not finitely generated then one has a counterexample to Hilbert 14 by
taking L = Q(ker(D)), the quotient field of ker(D).
The first counterexample to Hilbert 14 was found in 1958 by Nagata in dimension 32 [Nagata, 1958]. A
counterexample to Hilbert 14 in dimension 7 was given by Roberts in 1990 [Roberts, 1990]. Deveny and Finston
showed that this counterexample could be derived from the derivation D := x3∂S + y3∂T + z3∂U + x2y2z2∂V

whose kernel is not finitely generated [Deveney,Finston, 1994]. Furthermore, Derksen showed in [Derksen, 1993]
that any counterexample to Hilbert 14 could be derived as the kernel of a derivation.
It was proved by Zariski in [Zariski, 1954] that Hilbert 14 is true if trdegk(L) ≤ 2, which was used by Nagata
and Nowicki to show in [Nagata, Nowicki, 1988] that the kernel of any derivation on k[X1, . . . , Xn] has finitely
generated kernel if n ≤ 3.
Recently, a new counterexample to Hilbert 14 was given by Freudenburg in dimension 6, as the kernel of the
derivation D := x3∂s + y3s∂t + y3t∂u + x2y2dv [Freudenburg,1998]. This was an important new breakthrough,
which leaves Hilbert 14 open in dimensions 4 and 5 only.
It was conjectured by Nowicki that derivations of the form X

an−1
n−1 ∂Xn

+ . . . + Xa0
0 ∂X1 could have infinitely

generated kernel for n ≥ 4 if the ai are chosen wisely. Also one could try to find infinitely generated kernels in
dimension 4 or 5 by taking a derivation of the simple form as the Freudenburg or Deveney-Finston derivations.
Indeed, all derivations discussed above are of triangular monomial form (see below for definition).
In this article it will be proved that in dimension 4 there are no such easy counterexamples to Hilbert 14 similar
to the Freudenburg derivation. As a side result it is proved that Nowicki’s conjecture does not hold in dimension
4. The main theorem states that the class of monomial triangular derivations in dimension four has at most
four generators, and these generators will be given explicitly .
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2 Preliminaries

Throughout this paper we will use the following notations: k is a field of characteristic zero, k[X] := k[X1, . . . , Xn]
the polynomial ring in n variables and D is a k-derivation on k[X] (a map k[X] −→ k[X] satisfying D(ab) =
aD(b)+D(a)b, D(a+b) = D(a)+D(b) and which is zero on k). It can be proved that the set of all k-derivations
on k[X] is the set of all maps of the form D := a1(X)∂X1 + . . . + an(X)∂Xn where ai(X) ∈ k[X].
In the proof below an algorithm of van den Essen [Essen, 1993] to calculate the kernel of a given locally nilpotent
derivation is used. We will briefly describe the steps of the algorithm, without proofs.

Find p ∈ k[X] such that D(p) 6= 0, D2(p) = 0. Choose q ∈ k[X] such that D(p) = uql for some u ∈ k∗ and
some integer l > 0. Let s := p/q in k[X, q−1]. Now define

ri := qeiexp(−sD)(Xi)

where ei ∈ N is chosen such that ri ∈ k[X], q does not divide ri. Define

R0 := k[r1, . . . , rn, q].

Notice that R0 ⊂ k[X]. Now we define inductively Rm for m ∈ N. If Rm = k[F1, . . . , Ft] and I := {P ∈
k[Y1, . . . , Yt] | P (F1, . . . , Ft) ∈ k[X] · q} is generated by P1(Y ), . . . , Ps(Y ) then Rm+1 = k[F1, . . . , Ft, f1, . . . , fs]
where fi = q−1 ·Pi(F1, . . . , Ft). It is proved that Rm+1 is a finitely generated k-algebra. Now, if ever Rm = Rm+1

for some m then ker(D) = Rm.

3 Main theorem

Definition 3.1. A derivation D := a1(X)∂X1 + . . . + an(X)∂Xn
is called

1. monomial if each ai(X) is a monomial.

2. triangular if ai(X) ∈ k[Xi+1, . . . , Xn] if 1 ≤ i ≤ n− 1 and an ∈ k.

In the theorem below we use the following notations: D := λ1X
a
2 Xb

3X
c
4∂X1 + λ2X

d
3Xe

4∂X2 + λ3X
f
4 ∂X3 + λ4∂4

where a, b, c, d, e, f ∈ N and λi ∈ k. This is the general triangular monomial k-derivation. Furthermore we write

r1 := XF
4 (X1 −

∑a
i=0 µiX

a−i
2 X

b+1+i(d+1)
3 X

i(e−f)+c−f
4 )

r2 := XG
4 (X2 − 1

d+1
λ2
λ3

Xe−f
4 Xd+1

3 )
r5 := X−l

4 ( 1
d+1

λ2
λ3

rα
1 − µarβ

2 )

where

• G = max{0, f − e}, F = max{0, fa + f − ae− c}

• µi =
∏i

j=1

(
( a−j+1

b+1+j(d+1) )(
−λ2
λ3

)i
)

λ1
(b+1)λ3

• α := 1
E (b + 1 + a(d + 1)), β = 1

E (d + 1) in which E = gcd(b + 1 + a(d + 1), d + 1)

• l is some integer.

The only new part of the following theorem is the case λ4 = 0, λ1λ2λ3 6= 0. For completeness sake the generators
of the kernel of D for this case have been written down exactly.
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Theorem 3.2. Let A := k[X1, X2, X3, X4] and let D be a monomial triangular k-derivation on A.

1. If λ4 6= 0 then ker(D) = k[exp(−sD)(X1), exp(−sD)(X2), exp(−sD)(X3)] where s = λ−1
4 X4;

2. If λ4 = 0 and λ1λ2λ3 = 0 then ker(D) = k[F1, F2, F3] for some Fi;

3. If λ4 = 0 ,λ1λ2λ3 6= 0, ae + c − fa − f < 0 and e − f < 0, then ker(D) = k[X4, r1, r2, r5] where ri as
above;

4. If λ4 = 0 ,λ1λ2λ3 6= 0, ae + c− fa− f ≥ 0 or e− f ≥ 0 then ker(D) = k[X4, r1, r2] where ri as above.

Proof. (1): We use the algorithm described in section 2, and use the same notations. If λ4 6= 0 then take
p = X4, q = λ4 (and l = 1) and s = λ−1q. Now R0 = k[exp(−sD)(X1), exp(−sD)(X2), exp(−sD)(X3), q]. But
since q is invertible in k[X1, X2, X3, X4] any new step won’t introduce any new elements. Hence R0 = R1 and
the kernel is as stated.
(2): For this result we refer to [Daigle,Freudenburg, 1998].
(3): We will apply the algorithm described in section 2 again. Note D(X3) = λ3X

f
4 and define q = X4 and

s = X3/D(X3). Now when we want to calculate

ri := qei exp(−sD)(Xi).

We know ae + c− fa− f < 0 and e− f < 0.
Claim: In this case one has

r1 = Xfa+f−ae−c
4 X1 −

∑a
i=1 µiX

a−i
2 X

b+1+i(d+1)
3 X

(a−i)(f−e)
4 .

r2 = Xf−e
4 X2 − 1

d+1
λ2
λ3

Xd+1
3

r3 = 0
r4 = X4

where µi is as in the theorem. The only thing which needs to be proved of this claim is that the formula for r1

is correct. By the lemma following this proof we are done. Let R0 := k[r1, r2, r3, r4] = k[r1, r2, X4]. We want
to calculate R1. For such a g ∈ R1 we must have X l

4g = G(r1, r2) for some G(U1, U2) ∈ k[U1, U2], l ≥ 1. Hence
G(r1, r2) = 0(mod X4). So G(r1(mod X4), r2(mod X4)) = 0. Hence G(µaX

b+1+a(d+1)
3 , 1

d+1
λ2
λ3

Xd+1
3 ) = 0. If G is

taken of minimal degree then it must be of the form (c1U1)α−(c2U2)β where α = 1
E (d+1), β = 1

E (b+1+a(d+1))
in which E = gcd(b + 1 + a(d + 1), d + 1) and c1 = 1

µa
, c2 = (d + 1)λ3

λ2
. Hence we can take a maximal l ∈ N such

that X−l
4 G(r1, r2) ∈ A. Say r5 := X−l

4 G(r1, r2) = X−l
4 (c1r

α
1 − c2r

β
2 ). Since l is taken as large as possible we

have r5(mod X4) 6= 0. We now leave it to the reader to verify that r5mod(X4) depends on X2 (a real detailed
proof would be very tedious: as a hint, notice that r5mod(X4) is the lowest degree term with respect to X4 of
G(r1, r2)). It is easy to see that for any G̃ ∈ k[U1, U2] satisfying G̃(r1(mod X4), r2(mod X4)) = 0 G divides G̃.
Hence R1 = k[X4, r1, r2, r5]. Now let us attempt to construct R2. Suppose we have H ∈ k[U1, U2, U3] such that
H(r1, r2, r5) = X4(. . .). Then H(r1(mod X4), r2(mod X4), r5(mod X4)) = 0. But since r5(mod X4) depends
on X2 this means that H is independent of U3 and that we have a polynomial from our previous step. Hence
R2 = R1 and thus ker(D) = R1 = k[X4, r3, r4, r5].
(4): This case (in fact: these 3 cases) can be handled with similar arguments as in (3). For example, e− f ≥ 0
and ae + c− fa− f ≥ 0 brings up the problem of finding a polynomial G such that G(r1, r2) = X4(. . .) which
means 0 = G(r1(mod X4), r2(mod X4)). But in this case r1 depends on X1 while r2 doesn’t. Hence in this case
one has R0 = R1. In fact, in all remaining cases one has R0 = R1. Hence, triangular monomial derivations have
finite kernel of at most 4 generators exactly as stated in the theorem.
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Lemma 3.3.
Xfa+f−ae−c

4 exp(−sD)(X1) =
Xfa+f−ae−c

4 X1 −
∑a

i=1 µiX
a−i
2 X

b+1+i(d+1)
3 X

(a−i)(f−e)
4

where µi =
∏i

j=1

(
( a−j+1

b+1+j(d+1) )(
λ2
λ3

)i
)

λ1
(b+1)λ3

.

Proof. One can ofcourse compute that the formula is correct, but that is not easy. We will use another method
here. The ideas presented in this proof can be found in a more explained setting in [Maubach], especially the
grading-theory used below. Define two degree functions on A by means of

deg1(Xt1
1 Xt2

2 Xt3
3 Xt4

4 ) = t3 + (d + 1)t2 + (a(d + 1) + b + 1)t1
deg2(Xt1

1 Xt2
2 Xt3

3 Xt4
4 ) = t4 + ft3 + (df + e)t2 + (adf + ae + bf + c)t1.

and define a multidegree grad := (deg1, deg2) on A. So if we define An,m as the linear k-span of the monomials
M satisfying grad(M) = (n, m) then A :=

⊕
(n,m)∈N2 An,m. Furthermore, a nice property of this grading is

that D(An,m) ⊆ An−1,m, which can be easily checked. Using these properties it is an easy exercise to prove
that for every monomial M occuring in Xfa+f−ae−c

4 exp(sD)(X1) we have grad(M) = grad(Xfa+f−ae−c
4 X1).

Now if we restrict our map D to the linear space An,m where grad(Xfa+f−ae−c
4 X1) = (n, m) then D induces

a linear map l from An,m to An−1,m. Then since Xfa+f−ae−c
4 exp(−sD)(X1) ∈ An,m we have AD

n,m = ker(l).
The matrix of l with respect to the basis

{X1X
fa+f−ae−c
4 , Xa

2 Xb+1
3 X

a(f−e)
4 , Xa−1

2 X
b+1+(d+1)
3 X

(a−1)(f−e)
4 , . . . , X

b+1+a(d+1)
3 }

of An,m and the basis
{Xa

2 Xb
3X

a(f−e)
4 , Xa−1

2 Xb+d+1
3 X

(a−1)(f−e)
4 , . . . , X

b+a(d+1)
3 }

of An−1,m we denote byM. It has entries m1,1 = λ1, mi,i = (a+1−i)λ2 for i ≥ 2, mi,i+1 = (b+1+(i−1)(d+1))λ3

for i ≥ 1 and zeros elsewhere. It has dimension (a + 2) × (a + 1). The matrix has corank 1 and si of
maximal rank. Hence the kernel is one dimensional. Some calculation proves that the kernel is spanned by
e1 −

∑a
i=0 µiei+2 where e1, . . . , ea+2 is the standard basis and µi is exactly as previously described. Hence

AD
n,m is one dimensional and generated by Xfa+f−ae−c

4 X1 −
∑a

i=1 µiX
a−i
2 X

b+1+i(d+1)
3 X

(a−i)(f−e)
4 . We know

that Xfa+f−ae−c
4 exp(−sD)(X1) is in An,m and also in ker(D). Hence

Xfa+f−ae−c
4 exp(−sD)(X1) = Xfa+f−ae−c

4 X1 −
a∑

i=1

µiX
a−i
2 X

b+1+i(d+1)
3 X

(a−i)(f−e)
4 .

Now let us end, very poetically, with the title.

Corollary 3.4. Triangular monomial derivations on k[X1, X2, X3, X4] have kernel generated by at most four
elements.
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